
Faculty of Civil Engineering and Geosciences

June 19, 2006, 9:00–12:00
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General instructions

All pages of your solution must contain your name and your student number. Number

each page of your solution and indicate the total number of pages used. Please write

clearly and in English. Points for each question are in the left margin brackets.

Questions

1. Beam on elastic foundation

(a)[2] Consider the semi-infinite beam on elastic foundation under the action of two

concentrated loads, force and bending moment, depicted in the figure below.

elastic soil

x

z, w

F0

M0

Determine the expressions of the deflection w (x), rotation θ = dw (x) /dx , bend-

ing moment M (x), and transverse shear force V (x). Make use of the following

symbols:

Aβx = e−βx (cos βx + sin βx) , Bβx = e−βx sin βx ,

Cβx = e−βx (cos βx − sinβx) , Dβx = e−βx cosβx .

Also, note that

dAβx

dx
= −2βBβx ,

dBβx

dx
= βCβx ,

dCβx

dx
= −2βDβx ,

dDβx

dx
= −βAβx .

In the above relations, β = 4

√

k
4EI

with k the soil stiffness and EI the flexural rigidity

of the beam.

If you have done no mistakes, you should find that V (x) = −F0Cβx − 2M0βBβx .

Solution: The general solution for the deflection of an Euler-Bernoulli beam on

elastic foundation can be written as

w (x) = eβx (C1 cos βx + C2 sin βx) + e−βx (C3 cosβx + C4 sin βx) .

C1, C2, C3 and C4 are constants of integration which are determined by the

boundary conditions.
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Since w (x) → 0 for x → ∞, we must have C1 = C2 = 0. The boundary

conditions at x = 0 determine C3 and C4:

M (0) = −EIw ′′ (0) = M0 → C4 =
2β2M0

k
,

V (0) = −EIw ′′′ (0) = −F0 → C3 =
2βF0

k
−

2β2M0

k
.

Armed with these expressions we find

w (x) =
2βF0

k
Dβx −

2β2M0

k
Cβx ,

w ′ (x) = −
2β2F0

k
Aβx +

4β3M0

k
Dβx ,

M (x) = −EIw ′′ (x) = −
F0

β
Bβx + M0Aβx ,

and

V (x) = −EIw ′′′ (x) = −F0Cβx − 2M0βBβx ,

where a prime indicates the first derivative with respect to x , a double prime

indicates the second derivative with respect to x etc.

(b)[2] By using the solution from the previous question, determine the solution for the

beam of infinite length on elastic foundation under the action of a concentrated

force shown in the figure below.

elastic soil

x

z, w

F0

Solution:

A beam of infinite length on elastic foundation under the action of a concentrated

force can be equivalent to the beam of semi-infinite length on elastic foundation
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under the action of a concentrated force and a bending moment shown below.

elastic soil

x

z, w

F0

2

M0

The difference between these two cases is that in the former case the rotation

or slope w ′ (x) at the point of application of the force is zero. We can make use

of this fact to derive a boundary condition at x = 0.

The expression for the slope derived in the previous question at x = 0 is

w ′ (0) = −
2β2 F0

2

k
+

4β3M0

k
.

Note that we have used a load of intensity F0/2.

By setting the slope to zero, we can derive the value of the bending moment

that neutralise the slope created by the concentrated force. Proceeding along

this line, we obtain

M0 =
F0

4β
.

Finally, using the expressions from the previous question with F0/2 and M0 =

F0/4β, we obtain the solution for the beam of infinite length:

w (x) =
βF0

2k
Aβx ,

w ′ (x) = −
β2F0

k
Bβx ,

M (x) = −EIw ′′ (x) =
F0

4β
Cβx ,

V (x) = −EIw ′′′ (x) = −
F0

2
Dβx .

These expressions are valid for x > 0. The expressions for x < 0 are ob-

tained from the symmetry and antisymmetry conditions: w (x) = w (−x), w ′ (x) =

−w ′ (−x), M (x) = M (−x), V (x) = −V (−x).
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(c)[2] Consider the beam of finite length l on elastic foundation under the action of a

concentrated load as depicted below.

What should the length of the beam be so that the deflection w (x) derived for a

beam of infinite length can be used with confidence in this case?

elastic soil

x

z, w

F0

A

Solution:

The deflection w (x) in an Euler-Bernoulli beam of infinite length on elastic foun-

dation under the action of a concentrated load of intensity F0 can be expressed

by

w (x) =
F0β

2k
e−βx (cos βx + sin βx) =

F0β

2k
Aβx ,

where β = 4

√

k
4EI

with k the soil stiffness and EI the flexural rigidity of the beam.

The function Aβx is shown in the figure below.

βx

A
β

x

0
π
2 π 3π

2 2π 5π
2 3π

1

0.8

0.6

0.4

0.2

0

-0.2

To answer the question, we need to evaluate the function Aβx at a few points.
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βx Aβx |Aβx | [%]

0 +0.10000E + 01 100.000
π
2

+0.20788E + 00 20.788

π −0.43214E − 01 4.321
3π
2

−0.89833E − 02 0.898

2π +0.18674E − 02 0.187
5π
2

+0.38820E − 03 0.039

3π −0.80700E − 04 0.008

When βx > 3π
2

, |Aβx | < 1%. This means that for points at a distance larger

than 3
2
π
β

from the point of application of the concentrated force, the effect of the

soil stiffness on the deflection can be neglected. Therefore, a beam of length

l > 23
2
π
β

with a concentrated load applied at midspan exhibits approximately the

same deflection curve as an infinitely long beam under the action of a concen-

trated load of the same intensity.

2. Principle of superposition

(a)[1] Give an example where the principle of superposition of displacements holds.

Solution:

Amongst the many possibilities, see question 1(a) or consider the beam shown

in the figure below. The material of the beam obeys Hooke’s law, E is the

modulus of elasticity and I is the moment of inertia. If a concentrated force F is

applied at the free end, at a distance l from the clamped end, the deflection at

the free end, w = Fl3/3EI, is a linear function of F . Under these circumstances,

the principle of superposition of deflections holds. Hence, if wj (i) indicates the

transversal displacement at point i caused by a force j , then the deflection at

point A caused by the forces F1 and F2 equals wF1,F2 (A) = wF1
(A) + wF2

(A).

A

= +

F1 F2

F1 F2

wF1,F2

wF1
wF2

(b)[3] Consider the cable shown in the figure below. The left-hand side end is fixed
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while the right-hand side can move horizontally and is the point of application of

the horizontal force H. The cable is under the action of a distributed load q which

is expressed as a function of the cable tension T at x = l through q = λT (l) /l ,

where λ > 0 is a load factor.

Find the expression of the cable deflection and the cable sag f . Does the princi-

ple of superposition of cable sags and horizontal components of the cable tension

T hold? Justify your answer.

H

q

l

z, w

x

Solution: To answer this question we have to express the cable sag and the

horizontal component of the cable tension T as a function of the applied load.

Given the expression of the deflection

w (x) =
q

2H
x (l − x) ,

the cable sag f , in this case, is equal to the deflection at midspan:

f = w (l/2) =
ql2

8H
=
λT (l) l

8H
.

By using Phytagoras’ theorem we obtain the relation H2 = T 2 (x) − V 2 (x).

H

V (x)

T (l)
x = l

T (x)

Given that the distributed load is expressed as a function of T (l), we can ex-

press V (x) at x = l and factor the common term T (l). Armed with the expres-

sion

V (x) = −qx +
1

2
ql
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of the vertical component V of the cable tension, we can determine its value at

x = l as

V (l) = −
1

2
ql = −

1

2
λT (l) .

By making use of the expression H2 = T 2 (l)−V 2 (l) and of the previous relation

for V (l), we are now ready to express the horizontal component of the cable

tension as

H = T (l)

√

1 −
1

4
λ2

from which the cable sag follows as

f =
λl

8
√

1 − 1
4
λ2

.

The principle of superposition is not valid since the relation between the cable

sag f or the horizontal component H of the cable tension and the applied load,

expressed through the load factor λ, is not a linear one.
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